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THEORY OF CRYSTAL-MELT INTERFACES 

XIAO CHENG ZENG 
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(Received 24 October 1988) 

We present a density-functional approach for crystal-melt interface tension of simple metals. The theory is 
applied to simple bcc metal Na. and simple fcc metals Al and Pb. Comparing with available experimental 
surface tensions of these elements, the calculated results are in fairly good agreement with the measurements 
by conjecturing that the 10-90 width of the interfacial transition zone is about ten atomic layers, which is 
motivated from computer simulation. 
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Knowledge of the crystal-melt interfaces is essential for progress in understanding 
solidification and nucleation from the liquid to crystal. Attention has been focused 
both on the thermodynamic properties of the crystal-melt interface (especially the 
surface free energy which plays an important role in determining the equilibrium 
morphology of crystals) and on the microscopic structure of the interface (such as the 
density profile width). 

Unfortunately, surface tension measurements are extremely difficult to make 
experimentally for crystal-melt interfaces. Direct measurements of surface tension, 
which are made by observing the intersection angle of liquid, crystal, and grain 
boundary surfaces, and using a balance of forces argument, is only available for 
bismuth', water2, su~cinonirile~, cadmium4, and alkali halides5. Indirect 
measurements6 according to nucleation theory to estimate surface tension are also 
available for some metals. However, there remain some questions for the nucleation 
experiments, such as the problem of puring and homgenity, or the orientation- 
dependence of the surfaces. Many computer  simulation^'-'^ have been carried out for 
studying the interfacial properties. Most works focus on fcc and hcp crystals. Some 
theoretical studies are also proposed on calculation of surface tension of the crystal- 
melt In this paper, we present a density-functional theory to calculate 
the interfacial tension of the crystal-melt interface. We apply the theory to simple 
metals bcc Na and fcc A1 and Pb. The calculated results agree fairly well with the 
experimental measurements. 
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40 X.  CHENG ZENG 

Our work starts from the following expansion for the free energy f ~ n c t i o n a l ~ ’ ~ ~ ~ ,  
namely, considers the hot solid near melting as a perturbation on the liquid, 
associated with the one particle density p(r l ) :  

where f l  = l / ( k B T ) ;  is the number density of liquid: C ( r )  is the direct pair 
correlation function, and Fid is the free energy of an ideal gas. Such ideas have done 
very well on the liquid-solid freezing properties2’. Then, we expand the solid phase 
density in its Fourier space: 

where K, is the set of reciprocal lattice vectors of the solid; U.; = (p ,  - p,,)/po is the 
fractional density change on melting, and p, is the average density of the solid. The 
amplitudes U ,  are taken as the set of order parameters to describe the first-order 
transition. Since the theory is in the mean-field formalism, the fluctuations in the order 
parameters are not included. Generalizing Eq. ( 2 )  to a nonuniform crystal-melt 
interface, we have 

Here, Ufl(rl) is smoothly changed from zero on the liquid side to US, on the solid side. 
Therefore we can use the gradient expansion on the order parameters, 

(4) un(rz) = U,(rl) + (rz  - r l ) .VUf l ( r l )  + $C(rz - r L ) . V l 2 ~ , ( r l ) .  

With Eqs ( 2 ) ,  (3) and (4), Eq. ( I )  can be reduced to 

P W p l  = B jf(p(rl))drl - drlCC”(0)(VUn)z + C”(Kfl)(K,~31)2(VU,)Z1, ( 5 )  ’ S  f l f O  

where 

is the free energy for an uniform phase, and C”(k) = dzC(k)/dkz, C”(0) = 
dzC(k)/dkz l k  = o.  Considering a planar interface perpendicular to the z-direction at 
pressure p and melting temperature T,, the surface tension takes the form 
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Here p is the chemical potential. In order to calculate the surface tension, it is required 
to minimize Eq. (7) with respect to  the order parameter profiles. We make the ansatz 
that the profiles are given by 

(8) 
U S  u,(z) = 2 [l + tanh(tlz)], 

where the US, are the values of the order-parameters on the solid side, and tl is the 
variational parameter. The final results are as follows: the surface tension 

and 

with 
tl = (1,/1,)1’2, 

where w(p(z)) = f(p(z)) - pp(z) + p ,  and w is the 10-90 width for the order param- 
eter profile, which is a reasonable estimate of the interface width. From the above 
equations, we can calculate the surface tension by evaluating quantities I ,  and I , .  

Generally i t  is not trivial to calculate integral I , .  Curtin21 uses a weighted-density 
approximation to account for this nonlocal part of the Helmholtz free energy, and 
McMullen et obtain this integral by numerical integration. However the 
interfacial widths calculated from both approaches are too narrow in comparison 
with the results of computer simulation, and the surface tension is quite sensitive to 
the form of the trial density. Therefore, to eliminate the effect of the uncertainties from 
different conjectures in calculating I , ,  it is more reasonable to examine the product of 
surface tension and the width of the interface, which is related to the quantity I , .  This 
can be seen from the paper I and paper 1122 by McMullen and Oxtoby. Although they 
obtain significantly different results of surface tensions and surface widths with 
different assumptions of density profile, the products T W  calculated from their one 
order-parameter derivation are very close. To evaluate I,, we need the direct 
correlation function of the liquid C ( k )  and order parameters US, on the solid side. I t  is 
known that the hard-sphere correlation function is a good approximation of C ( k )  for 
simple metals. Thus we use the hard-sphere model reference system to calculate C”(k). 
It has been claimed by Ramakrishnan and Y u s ~ o u f f ~ ~  that US, is related to the 
Debey-Waller factor e - 2 w n  by p: = e - 2 w n ,  where = US,/(l + US,). From the 
Debye phonon theory of solids, we know that the Debye-Waller factor is related to 
the Debye temperature O D .  Near melting, the Debye-Waller factor can be expressed as 
W, = (3h2K,2 Tm)/ (2Mk,0i ) ,  where T, is the melting temperature, and M is the atomic 
mass of the element. Motivated from the computer simulation of the solid-liquid 
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42 X. CHENG ZENG 

Table 1 Input experimental data of bcc Na and fcc Al, Pb near melting. 
a ,  is the lattice constant of the crystal; T,, is the melting temperature; 8, is 
the Debye temperature; po is the number density of liquid; U; is the 
fractional density increase at melting; and q is the hard-sphere packing 
fraction of the elements in the liquid state. 

Element a , ( A )  T , ( K )  O , ( K )  pa(.&’) U; 1 

Na 4.3 13 371 158 0.0243 0.026 0.435 
Al 4.13 933 428 0.0529 0.073 0.471 
Pb 5.0 600 105 0.0310 0.032 0.455 

interface7-’ 9, we conjecture that the interfacial width takes about ten atomic layers 
universally for the simple liquid elements, which means that the thickness of the 
surface is about 3 cubic lattice constant for fcc crystal elements and 3.7 cubic lattice 
constant for bcc crystal elements. In Table 1, we list the input experimental data for 
bcc element Na and fcc elements Al, Pb. Calculated results of the interfacial tensions 
and widths with the experimental surface tensions6*26 of these simple metals are listed 
in Table 2. 

We use only one order parameter for bcc Na, since it has been shown2’ that this is 
sufficient to describe the melting transition of solid to liquid and the contributions 
from the other order parameters are two orders of magnitude smaller than that of the 
first order parameter. For fcc metals, only some leading order parameters (we take 
twenty order parameters) are required to evaluate the solid-liquid surface tensions. 
This is because U,( z )  for large K ,  must decay to zero much faster than those of the 
small K , ,  and I C”(K,)I also goes to zero very quickly as K ,  becomes larger. We ignore 
the term C”(0)U;2 since it is three orders smaller than the main term. Comparing the 
theoretical calculation with the indirect measurements quoted by Turnbul16, we find 
that the agreement is fairly reasonable, considering the simplicity of our assumption 
and taking into account the uncertainty of the nucleation experiments. 

In conclusion, we have presented a mean-field theory to carry out the calculation of 
the crystal-melt interfacial properties for simple metals. The estimated interfacial 
tensions of three simple metals are very reasonable upon comparison with available 
measurements. However calculation from first principles on general elements still 
remains a challenging problem. 

Table 2 The calculated results of the interfacial tension 
rlhr and the experimental interfacial tension r,,6.26; w is the 
10-90 width of the interface. 

EIement T , ~  (erg /cm2)  T~~ (erg /cm2)  w (A) 

Na I 1  20 16 
A1 88 93 12.4 
Pb 35 33.3 15 
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